A CFD Investigation of Emissions Formation in HCCI Engines, Including Detailed NOx Chemistry

نویسندگان

  • E. H. Kung
  • S. Priyadarshi
  • B. C. Nese
  • D. C. Haworth
چکیده

Three-dimensional time-dependent CFD simulations of autoignition and emissions are reported for an idealized engine configuration under HCCI-like operating conditions. The emphasis is on NOx emissions. Detailed NOx chemistry is integrated with skeletal autoignition mechanisms for n-heptane and iso-octane fuels. A storage/retrieval scheme is used to accelerate the computation of chemical source terms, and turbulence/chemistry interactions are treated using a transported probability density function (PDF) method. Simulations include direct in-cylinder fuel injection, and feature direct coupling between the stochastic Lagrangian fuel-spray model and the gas-phase stochastic Lagrangian PDF method. For the conditions simulated, consideration of turbulence/chemistry interactions is essential. Simulations that ignore these interactions fail to capture global heat release and ignition timing, in addition to emissions. For these lean, low-temperature operating conditions, engine-out NOx levels are low and NOx pathways other than thermal NO are dominant. Engine-out NO2 levels exceed engine-out NO levels in some cases. In-cylinder inhomogeneity and unmixedness must be considered for accurate emissions predictions. These findings are consistent with results that have been reported recently in the HCCI engine literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combustion Modeling for Modern Direct Injection Diesel Engines

In order to comply with stringent pollutant emissions regulations, a detailed analysis of the engine combustion and emission is required. In this field, computational tools like CFD and engine cycle simulation play a fundamental role. Therefore, the goal of the present work is to simulate a high speed DI diesel engine and study the combustion and major diesel engine emissions with more deta...

متن کامل

Theoretical and Experimental Analysis of OM314 Diesel Engine Combustion and Performance Characteristics Fueled with DME

Homogeneous Charge Compression Ignition (HCCI) combustion is a pioneer method of combustion in which pre-mixed fuel and oxidizer (typically air) are compressed to the point of auto-ignition. HCCI engines can operate with most alternative fuels, especially, dimethyl ether (DME) which has been tested as a possible diesel fuel due to its simultaneously low NOx and PM emissions. In this paper a ...

متن کامل

Effect of Hydrogen Addition to Natural Gas on Homogeneous Charge Compression Ignition Combustion Engines Performance and Emissions Using a Thermodynamic Simulation

The HCCI combustion process is initiated due to auto-ignition of fuel/air mixture which is dominated by chemical kinetics and therefore fuel composition has a significant effect on engine operation and a detailed reaction mechanism is essential to analysis HCCI combustion. A single zone-model permits to have a detailed chemical kinetics modeling for practical fuels. In this study a single-zone ...

متن کامل

Effect of Initial Temperature and EGR on Combustion and Performance Characteristics of Homogenous Charge Compression Ignition Engine Fueled with Dimethyl Ether

Homogeneous Charge Compression Ignition (HCCI) combustion is a pioneer method of combustion in which pre-mixed fuel and oxidizer (typically air) are compressed to the point of auto-ignition. HCCI engines can operate with most alternative fuels, especially, dimethyl ether (DME) which has been tested as a possible diesel fuel due to its simultaneously low NOx and PM emissions. In this paper a ...

متن کامل

Multi-Dimensional Modeling of the Effects of Split Injection Scheme on Combustion and Emissions of Direct-Injection Diesel Engines at Full Load State

One of the important problems in reducing pollutant emission from diesel engines is trade-off between soot and NOx. Split injection is one of the most powerful tools that decrease soot and NOx emissions simultaneously. At the present work, the effect of split injection on the combustion process and emissions of a direct-injection diesel engine under full-load conditions is investigated by the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006